25,473 research outputs found

    Lorentz invariance violation and charge (non--)conservation: A general theoretical frame for extensions of the Maxwell equations

    Full text link
    All quantum gravity approaches lead to small modifications in the standard laws of physics which lead to violations of Lorentz invariance. One particular example is the extended standard model (SME). Here, a general phenomenological approach for extensions of the Maxwell equations is presented which turns out to be more general than the SME and which covers charge non--conservation (CNC), too. The new Lorentz invariance violating terms cannot be probed by optical experiments but need, instead, the exploration of the electromagnetic field created by a point charge or a magnetic dipole. Some scalar--tensor theories and higher dimensional brane theories predict CNC in four dimensions and some models violating Special Relativity have been shown to be connected with CNC and its relation to the Einstein Equivalence Principle has been discussed. Due to this upcoming interest, the experimental status of electric charge conservation is reviewed. Up to now there seem to exist no unique tests of charge conservation. CNC is related to the precession of polarization, to a modification of the 1/r1/r--Coulomb potential, and to a time-dependence of the fine structure constant. This gives the opportunity to describe a dedicated search for CNC.Comment: To appear in Physical Review

    Q & A Experiment to Search for Vacuum Dichroism, Pseudoscalar-Photon Interaction and Millicharged Fermions

    Get PDF
    A number of experiments are underway to detect vacuum birefringence and dichroism -- PVLAS, Q & A, and BMV. Recently, PVLAS experiment has observed optical rotation in vacuum by a magnetic field (vacuum dichroism). Theoretical interpretations of this result include a possible pseudoscalar-photon interaction and the existence of millicharged fermions. Here, we report the progress and first results of Q & A (QED [quantum electrodynamics] and Axion) experiment proposed and started in 1994. A 3.5-m high-finesse (around 30,000) Fabry-Perot prototype detector extendable to 7-m has been built and tested. We use X-pendulums and automatic control schemes developed by the gravitational-wave detection community for mirror suspension and cavity control. To polarize the vacuum, we use a 2.3-T dipole permanent magnet, with 27-mm-diameter clear borehole and 0.6-m field length,. In the experiment, the magnet is rotated at 5-10 rev/s to generate time-dependent polarization signal with twice the rotation frequency. Our ellipsometer/polarization-rotation-detection-system is formed by a pair of Glan-Taylor type polarizing prisms with extinction ratio lower than 10-8 together with a polarization modulating Faraday Cell with/without a quarter wave plate. We made an independent calibration of our apparatus by performing a measurement of gaseous Cotton-Mouton effect of nitrogen. We present our first experimental results and give a brief discussion of our experimental limit on pseudo-scalar-photon interaction and millicharged fermions.Comment: 21 pages, 13 figures, submitted to Modern Physics Letter

    Adaptive EDCF: Enhanced service differentiation for IEEE 802.11 wireless ad-hoc networks

    Get PDF
    This paper describes an adaptive service differentiation scheme for QoS enhancement in IEEE 802.11 wireless ad-hoc networks. Our approach, called adaptive enhanced distributed coordination function (AEDCF), is derived from the new EDCF introduced in the upcoming IEEE 802.11e standard. Our scheme aims to share the transmission channel efficiently. Relative priorities are provisioned by adjusting the size of the contention window (CW) of each traffic class taking into account both applications requirements and network conditions. We evaluate through simulations the performance of AEDCF and compare it with the EDCF scheme proposed in the 802.11e. Results show that AEDCF outperforms the basic EDCF, especially at high traffic load conditions. Indeed, our scheme increases the medium utilization ratio and reduces for more than 50% the collision rate. While achieving delay differentiation, the overall goodput obtained is up to 25% higher than EDCF. Moreover, the complexity of AEDCF remains similar to the EDCF scheme, enabling the design of cheap implementations

    The effect of the motion of the Sun on the light-time in interplanetary relativistic experiments

    Full text link
    In 2002 a measurement of the effect of solar gravity upon the phase of coherent microwave beams passing near the Sun has been carried out with the Cassini mission, allowing a very accurate measurement of the PPN parameter γ\gamma. The data have been analyzed with NASA's Orbit Determination Program (ODP) in the Barycentric Celestial Reference System, in which the Sun moves around the centre of mass of the solar system with a velocity v⊙v_\odot of about 10 m/sec; the question arises, what correction this implies for the predicted phase shift. After a review of the way the ODP works, we set the problem in the framework of Lorentz (and Galilean) transformations and evaluate the correction; it is several orders of magnitude below our experimental accuracy. We also discuss a recent paper \cite{kopeikin07}, which claims wrong and much larger corrections, and clarify the reasons for the discrepancy.Comment: Final version accepted by Classical and Quantum Gravity (8 Jan. 2008

    Constraint on intermediate-range gravity from earth-satellite and lunar orbiter measurements, and lunar laser ranging

    Full text link
    In the experimental tests of gravity, there have been considerable interests in the possibility of intermediate-range gravity. In this paper, we use the earth-satellite measurement of earth gravity, the lunar orbiter measurement of lunar gravity, and lunar laser ranging measurement to constrain the intermediate-range gravity from lambda=1.2*10^{7}m - 3.8*10^{8}m. The limits for this range are alpha=10^{-8}-5*10^{-8}, which improve previous limits by about one order of magnitude in the range lambda=1.2*10^{7}m-3.8*10^{8}m.Comment: 8 pages, International Journal of Modern Physics D, in press (World Scientific, 2005

    Time-Frequency Analysis Reveals Pairwise Interactions in Insect Swarms

    Full text link
    The macroscopic emergent behavior of social animal groups is a classic example of dynamical self-organization, and is thought to arise from the local interactions between individuals. Determining these interactions from empirical data sets of real animal groups, however, is challenging. Using multicamera imaging and tracking, we studied the motion of individual flying midges in laboratory mating swarms. By performing a time-frequency analysis of the midge trajectories, we show that the midge behavior can be segmented into two distinct modes: one that is independent and composed of low-frequency maneuvers, and one that consists of higher-frequency nearly harmonic oscillations conducted in synchrony with another midge. We characterize these pairwise interactions, and make a hypothesis as to their biological function

    Deep mantle structure and the postperovskite phase transition

    Get PDF
    Seismologists have known for many years that the lowermost mantle of the Earth is complex. Models based on observed seismic phases sampling this region include relatively sharp horizontal discontinuities with strong zones of anisotropy, nearly vertical contrasts in structure, and small pockets of ultralow velocity zones (ULVZs). This diversity of structures is beginning to be understood in terms of geodynamics and mineral physics, with dense partial melts causing the ULVZs and a postperovskite solid–solid phase transition producing regional layering, with the possibility of large-scale variations in chemistry. This strong heterogeneity has significant implications on heat transport out of core, the evolution of the magnetic field, and magnetic field polarity reversals
    • 

    corecore